Predicción de la Distorsión Inducida por los Procesos de Soldadura en Estructuras de Acero mediante el método de redes neuronales

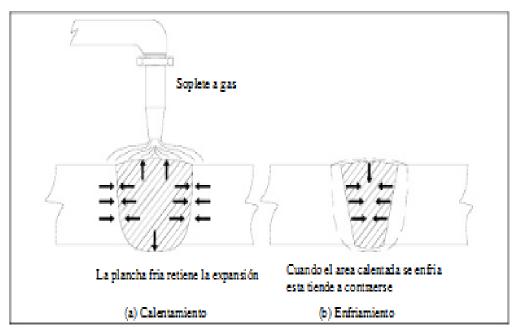
Dr. Adan VEGA

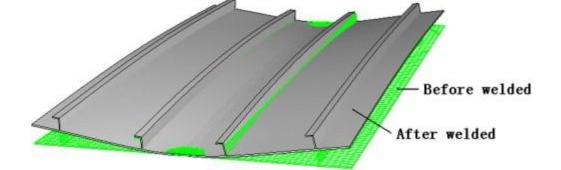
Universidad Tecnológica de Panamá

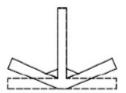
Contenido

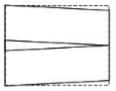
- 1. Introducción
- 2. Distorsión inducida por la soldadura
 - Factores o Variables que Influyen en las Deformaciones
 - Técnicas de Prevención de Deformaciones
 - Técnicas de Corrección de Deformaciones
- 3. Métodos para Predecirla
 - Método Experimental
 - Método termo elástico Plástico de elementos finitos
 - Modelos de Redes Neuronales
 - Método Elástico de elementos finitos
- 4. Comentarios finales

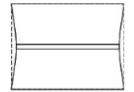
Introdución

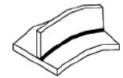








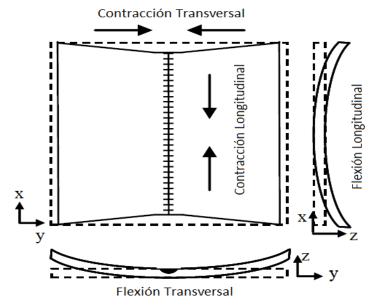

Contracción Transversal


Distorsión Angular

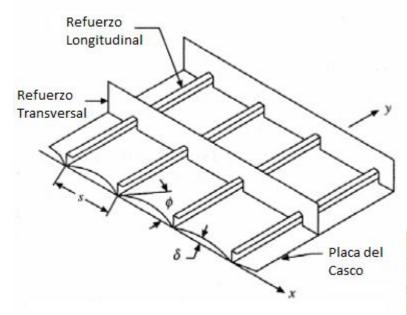
Distorsión Rotacional

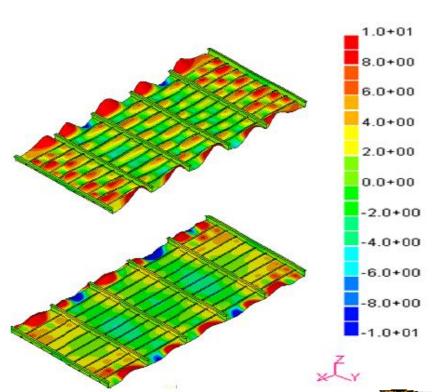
Contracción Longitudinal

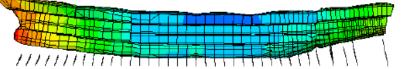
Doblado Longitudinal

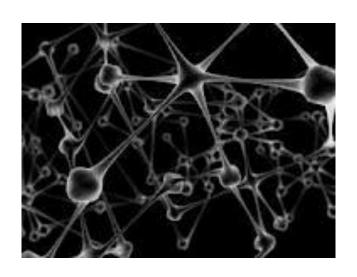


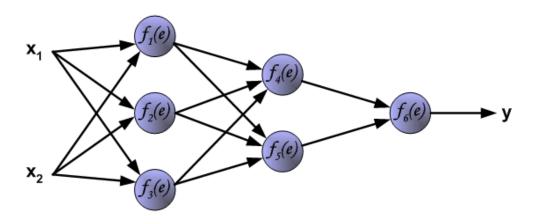
Pandeo



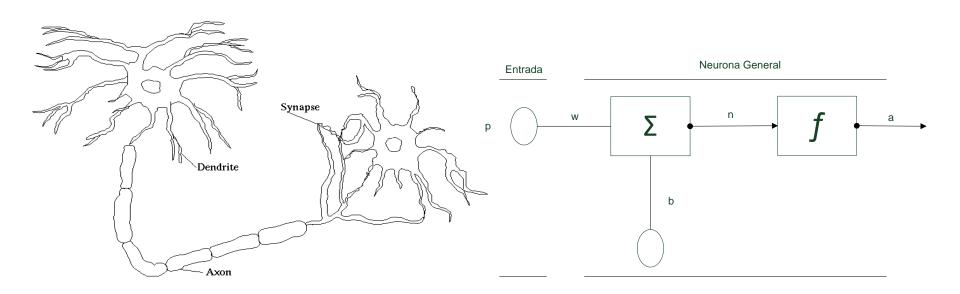








Redes Neuronales Artificiales



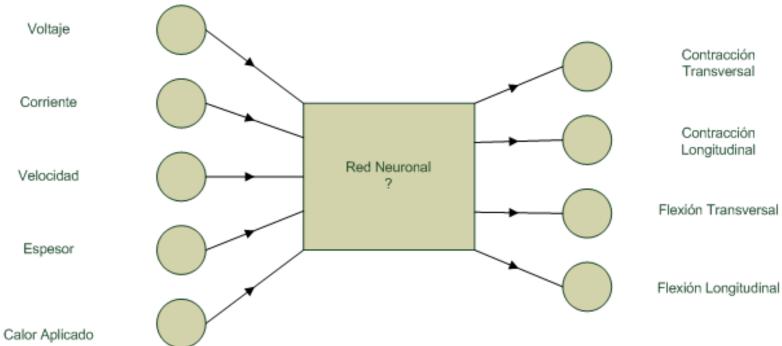
Redes Neuronales Artificiales

Objetivos

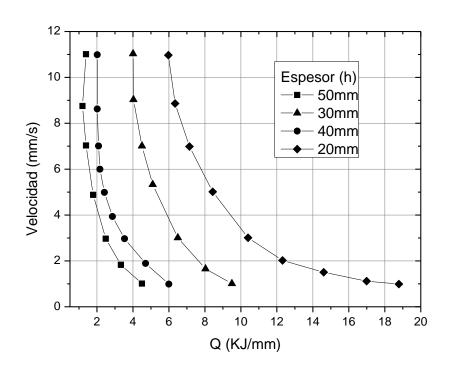
- Desarrollar un modelo de red neuronal que permita estudiar y predecir las distorsiones producidas por los procesos de soldadura en estructuras soldadas.
- Desarrollar un programa computacional de fácil uso para la predicción de distorsiones en estructuras soldadas.
- Estudiar, por medio del modelo de red neuronal las variables que afectan el proceso e incorporarlas en el análisis de deformaciones en estructuras soldadas.
- Introducir una nueva herramienta para el análisis de distorsiones producidas por soldadura en estructuras soldadas.

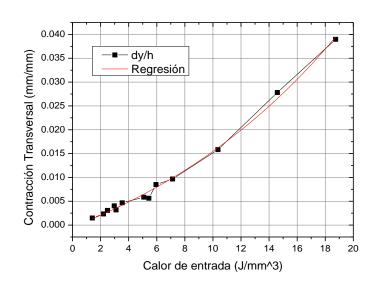
Metodología

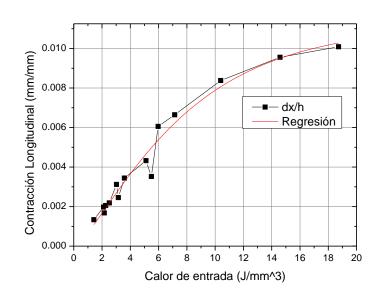
- La primera etapa de este trabajo de tesis consiste en una extensa revisión bibliográfica de las diferentes causas de las distorsiones producida por los procesos de soldadura y ¿cómo se puede predecir estos?
- Una vez comprendido el problema de estudio, procederemos a desarrollar la herramienta de análisis. Para ello estudiaremos a fondo la teoría detrás de los modelos de redes neuronales y ¿cómo se puede incorporar en el caso de nuestro interés?
- Para ello utilizaremos el software comercial MATLAB, el cual contiene funciones recomendadas para el desarrollo de modelos de redes neuronales.
- Una vez desarrollado y entrenado el modelo, para lo que utilizaremos referencias de datos obtenidos por otros autores mediante simulación por elementos finitos y experimentos, procederemos a validarlo.
- Luego de la validación desarrollaremos un estudio paramétrico para entender y explicar la influencia de las variables que afectan nuestro modelo.


Desarrollo del Modelo

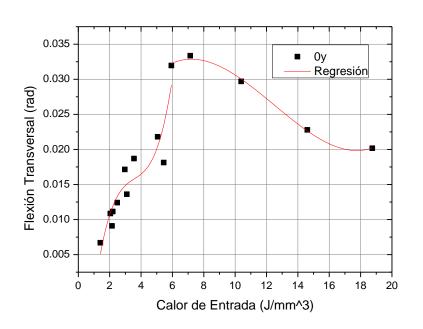
- Modelo Preliminar
- Extracción de la información
- Desarrollo de la red
 - Arquitectura
 - Capas
 - Neuronas
 - Entrenamiento
- Generalización
- Resultados

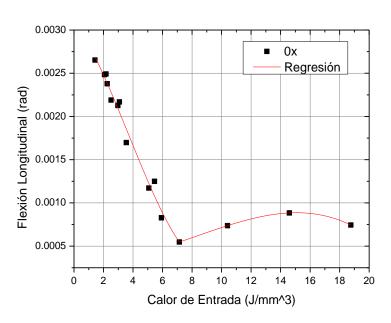

Modelo Preliminar


Extracción de la Información



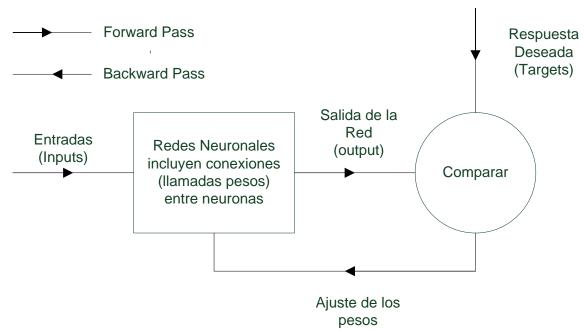
Extracción de la Información


Contracción Transversal

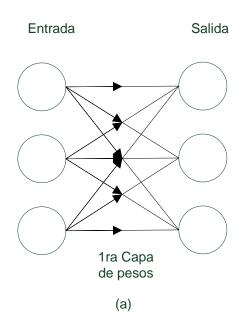

Contracción Longitudinal

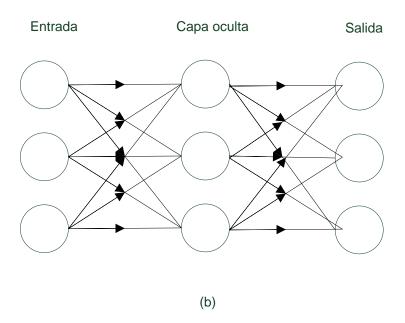
Extracción de la Información

Contracción Transversal

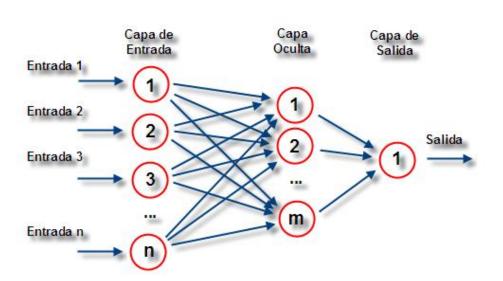

Contracción Longitudinal

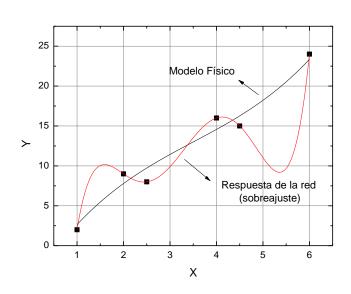
Desarrollo de la red Neuronal


Arquitectura

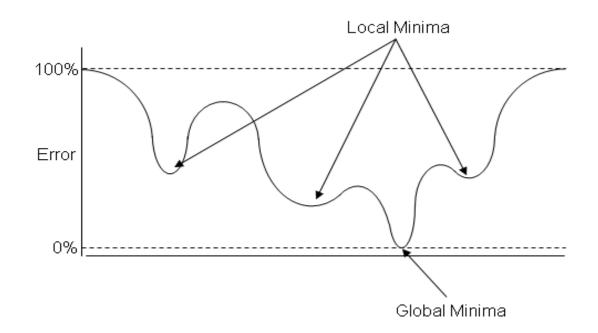


Cantidad de Capas

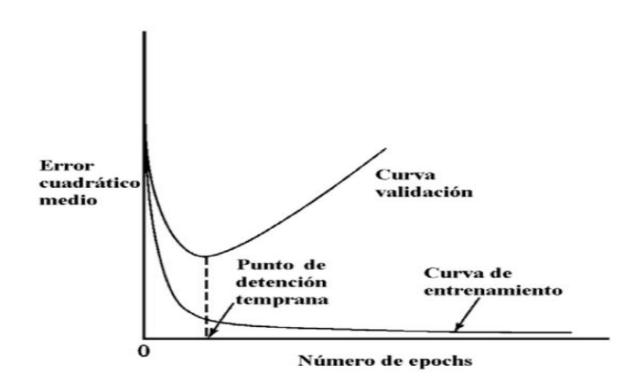


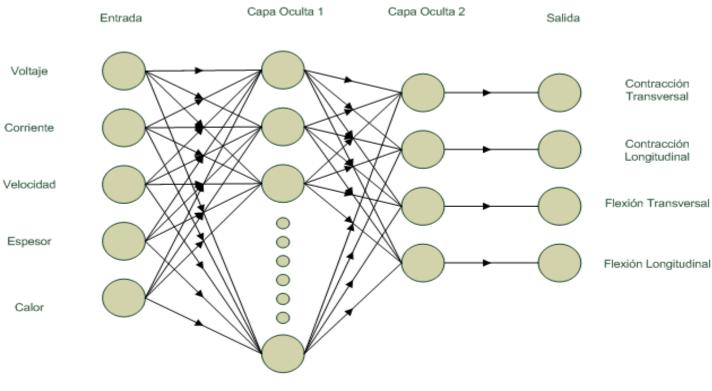


Cantidad de Neuronas

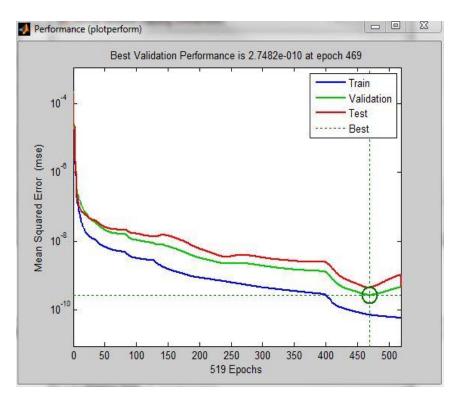


Entrenamiento

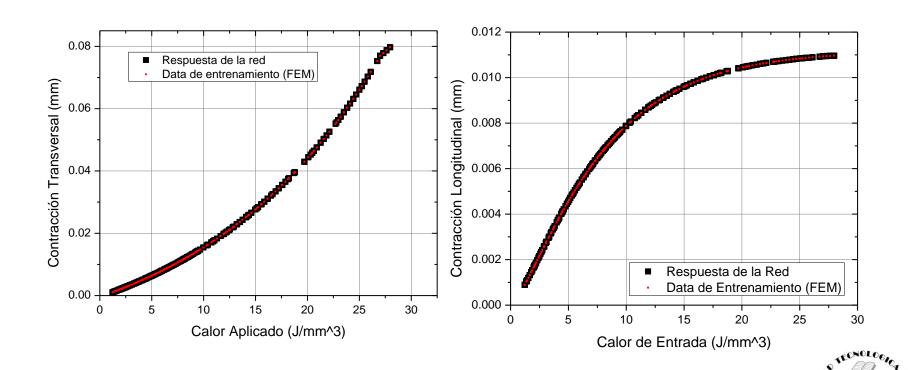

• Levenberg -Marquardt

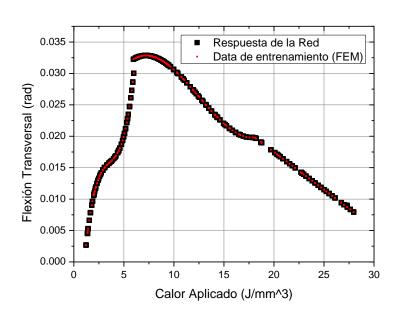

Generalización

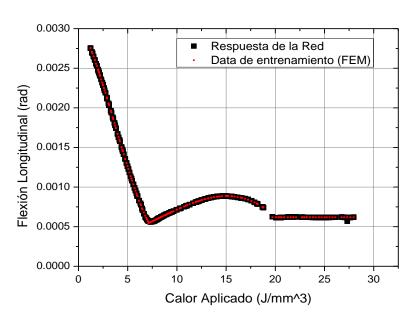
Vista Preliminar



Resultados


RNA	MSE Validación	Correlación
15-4	1.28E-8	0.9765
20-4	9.14E-9	0.9820
8-6-4	5.32E-10	0.9949
10-8-4	2.17E-9	0.9925
12-8-4	2.74E-10	0.9999
12-8-6-4	7.67E-10	0.9994




Resultados

Resultados

Validación

Condición de Soldadura	Caso #1	Caso #2	Caso #3	Caso #4	Caso #5	Caso #6
Voltaje	33	37	41	43	31	38
Corriente	800	500	337	244	110	36
Velocidad	2.50	1.50	1.33	1.34	1.20	1.10
Espesor	50	40	30	20	10	6
Calor de Entrada	3.17	5.78	8.66	14.68	21.31	25.91

Contracción Transversal	0.0037	0.0076	0.0128	0.0268	0.0492	0.0708
Contracción Longitudinal	0.0028	0.0052	0.0072	0.0095	0.0106	0.0109
Flexión Transversal	0.0152	0.0271	0.0322	0.0225	0.0159	0.0104
Flexión Longitudinal	0.0020	0.0010	0.0006	0.0009	0.0006	0.0006

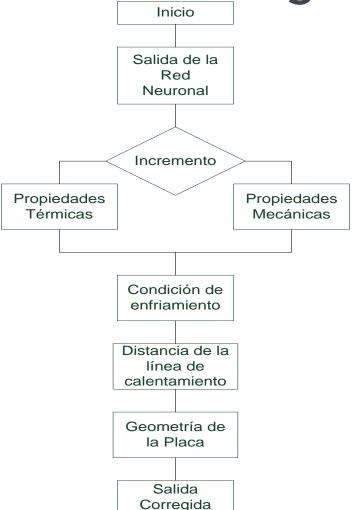
Validación

	Caso #1				Caso #2				Caso #3			
	dy	dx	Oy	0x	dy	dx	Oy	0x	dy	dx	Oy	0x
Deformación Inherente	0.0037	0.0028	0.0152	0.0020	0.0076	0.0052	0.0271	0.0010	0.0128	0.0072	0.0322	0.0006
Respuesta de la Red	0.0037	0.0028	0.0152	0.0020	0.0076	0.0052	0.0269	0.0010	0.0127	0.0072	0.0322	0.0006
% Error	0.1039	0.0173	0.3535	0.0698	0.0324	0.0462	0.7693	0.1533	0.1116	0.0703	0.0117	0.3710

	Caso #4				Caso #5				Caso #6			
	dy	dx	0y	0x	dy	dx	Oy	0x	dy	dx	Oy	0x
Deformación Inherente	0.0268	0.0095	0.0225	0.0009	0.0492	0.0106	0.0159	0.0006	0.0708	0.0109	0.0104	0.0006
Respuesta de la Red	0.0268	0.0095	0.0225	0.0009	0.0492	0.0106	0.0159	0.0006	0.0708	0.0109	0.0104	0.0006
% Error	0.0132	0.0159	0.0272	0.2204	0.0471	0.2343	0.1570	2.9239	0.0336	0.1506	0.0873	2.9239

Aplicación del modelo

- Programa para la predicción de distorsiones utilizando redes neuronales.
 - Factores secundarios que influyen en la distorsión.
 - Estructuración del programa.
 - Interfaz gráfica del usuario.



- Factores secundarios que influyen la distorsión debido a soldadura
 - Condiciones de Enfriamiento.
 - Propiedades Mecánicas del material.
 - Propiedades Térmicas.
 - Geometría de la Placa.
 - Distancia del borde del eje a la línea de calentamiento.

Estructuración del Programa

Interfaz gráfica de usuario

Plate Geometry——			Thermal Properties	Value
Length	1000	mm	Thermla Conductivity	1
Thickness	30	mm	Specific Heat	1
Width	1000	mm	Density	1
			Heat Transfer Coefficient	1
Heating Conditions –				
Voltage	35	\ \	Mechanical Properties	
Current	1500	А	Yield Strees	Value 1
Speed	9.87	mm/s	Young's Modulus	1
Efficiency	.75		Thermal Expantion Coefficient	1
			Poisson's Ratio	1
Location of Heating	Lines			
Distance of Edge	1000	mm	Deformatio	n
			Calculate dy 0.1	81794 mm
Cooling Condition—			dx 0.1	18096 mm
Normal Cooling	▼	4.XX	EPUM 05 0.5	26866 Rad

Comentarios finales

- La distorsión Inducida por la soldadura juega un importante rol en el costo y la calidad final de una estructura soldada
- Existen métodos para corregir y minimizar los efectos del calor en el metal, sin embargo estos no son del todo preciso
- Es necesario poder predecir durante la etapa de diseño, la distorsión que se producirá durante el proceso de fabricación

Muchas Gracias por su Amable Atención

Doctor Adan Vega Saenz

Director del Laboratorio Especializado en Procesos de Unión y Manufactura (LEPUM)

Universidad Tecnológica de Panamá, Ciudad de Panamá

www.lepum.utp.ac.pa

Email: adan.vega@utp.ac.pa

Phone: (507) 60198076 / 560-3095

